Practical PBT/PC/GNP composites with anisotropic thermal conductivity
نویسندگان
چکیده
منابع مشابه
Thermal Conductivity of Diamond Composites
A major problem challenging specialists in present-day materials sciences is the development of compact, cheap to fabricate heat sinks for electronic devices, primarily for computer processors, semiconductor lasers, high-power microchips, and electronics components. The materials currently used for heat sinks of such devices are aluminum and copper, with thermal conductivities of about 250 W/(m...
متن کاملThermal conductivity enhancement of carbon fiber composites
The effective thermal conductivity enhancement of carbon fiber composites is investigated in this contribution using a three-dimensional numerical method. First a more realistic three-dimensional distribution of fibers dispersed in a matrix phase is reproduced by a developed random generation-growth method to eliminate the overrated inter-fiber contacts by the two-dimensional simulations. The e...
متن کاملStrong anisotropic thermal conductivity of nanoporous silicon
Nanoporous silicon is known to have a thermal conductivity that is orders of magnitude smaller than the bulk crystalline silicon from which it is formed. Even though the strong columnar microscopic structure of porous silicon indicates the possibility of highly anisotropic thermal properties, there have been no measurements. We report here an experimental investigation of this anisotropy. An an...
متن کاملAnisotropic Thermal Conductivity of Exfoliated Black Phosphorus.
The anisotropic thermal conductivity of passivated black phosphorus (BP), a reactive two-dimensional material with strong in-plane anisotropy, is ascertained. The room-temperature thermal conductivity for three crystalline axes of exfoliated BP is measured by time-domain thermo-reflectance. The thermal conductivity along the zigzag direction is ≈2.5 times higher than that of the armchair direct...
متن کاملMOF-5 composites exhibiting improved thermal conductivity
The low thermal conductivity of the prototype hydrogen storage adsorbent, metal-organic framework 5 (MOF-5), can limit performance in applications requiring rapid gas uptake and release, such as in hydrogen storage for fuel cell vehicles. As a means to improve thermal conductivity, we have synthesized MOF-5-based composites containing 1e10 wt.% of expanded natural graphite (ENG) and evaluated t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: RSC Advances
سال: 2019
ISSN: 2046-2069
DOI: 10.1039/c9ra07168g